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PROF. DRAGOS GHIOCA

Problem 1. Find all real numbers a, b, c with the property that the equation

x3 + ax2 + bx + c = 0

has 3 real roots r1, r2, r3 (not necessarily distinct) with the property that the equa-
tion

x3 + a3x2 + b3x + c3 = 0

has the roots r31, r
3
2, r

3
3.

Solution. So, we’re asked to find a, b and c such that there exist distinct real
numbers r1, r2 and r3 such that

−a3 = (r1 + r2 + r3)3 = r31 + r32 + r33

b3 = (r1r2 + r1r3 + r2r3)3 = r31r
3
2 + r31r

3
3 + r32r

3
3

−c = r1r2r3.

The first equation yields

0

= 3(r21r2 + r21r3 + r22r1 + r22r3 + r2r
2
3 + r1r

2
3) + 6r1r2r3

= 3(r1r2 + r2r3 + r3r1)(r1 + r2 + r3)− 3r1r2r3

= −3ab + 3c;

so, c = ab. Now, the second condition yields similarly∑
σ is a permutation

of {1, 2, 3}

x3
σ(1)x

2
σ(2)xσ(3) + 2r21r

2
2r

2
3 = 0

and so,

0

= (r21r2r3 + r1r
2
2r3 + r1r2r

2
3)(r1r2 + r2r3 + r3r1)− r21r

2
2r

2
3

= r1r2r3(r1 + r2 + r3) · b− c2

= (−c)(−a)b− c2

= c(ab− c).

Thus, the condition c = ab is sufficient to guarantee that the solutions of x3 +
a3x2 +b3x+c3 = 0 are precisely r31, r32 and r33, where r1, r2 and r3 are the solutions
of x3 + ax2 + bx + c = 0.

Problem 2. Let f : R+ −→ R+ be a non-constant function with the property
that for each x, y > 0 we have that f(xy) = f(x)f(y). Find two functions g, h :
R+ −→ R+ satisfying the properties:
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• h
(
x
y

)
= h(x)h(y)− g(x)g(y) for each x, y > 0; and

• h(x) + g(x) = f(x) for each x > 0.

Solution. We note that f(x · 1) = f(x) · f(1) and so we must have that f(1) = 1.
Also, we obtain that f(1/x) = 1/f(x). Now, using y = x in the first relation above,
we get

h(1) = h(x)2 − g2(x)

which we then combine with h(x) + g(x) = f(x) in the special case x = 1 and
therefore,

h(1) = h(1)2−g(1)2 = (h(1)−g(1))·(h(1)+g(1)) = (h(1)−g(1))·f(1) = h(1)−g(1),

which yields that g(1) = 0 and in turn, h(1) = 1. Thus,

1 = h(1) = h(x)2 − g(x)2 = (h(x)− g(x)) · (h(x) + g(x)) = (h(x)− g(x)) · f(x)

and so, h(x)− g(x) = 1/f(x), while h(x) + g(x) = f(x). In conclusion,

h(x) =
f(x)2 + 1

2f(x)
and g(x) =

f(x)2 − 1

2f(x)
.

Using the fact that f(x/y) = f(x)/f(y), we verify that indeed,

h

(
x

y

)
= h(x)h(y)− g(x)g(y) for all x and y.

Problem 3. Let x, y, z ∈ N such that xy − z2 = 1. Prove that there exist
nonnegative integers a, b, c, d such that x = a2 + b2, y = c2 + d2 and z = ac + bd.

Solution. First of all, we note the following: if x, y, z ∈ N satisfy xy − z2 = 1,
then

(i) x 6= y and so, without loss of generality, we may assume x < y.
(ii) With the above convention regarding x < y, we then have either that

(x, y, z) = (1, 2, 1) or that x < z < y.

Indeed, if x = y we would have x2 − z2 = 1 which has no solution in positive
integers. Therefore, we must have x 6= y and so, without loss of generality, we may
assume x < y, which proves part (i) above.

Now, for the part (ii) above, we assume that (x, y, z) 6= (1, 2, 1), which is equiv-
alent with asking that z > 1. Now, since y2 > xy > z2, then we must have that
y > z. If in addition, x ≥ z, then y > x ≥ z and so,

xy − z2 ≥ yz − z2 = z(y − z) ≥ z > 1,

contradiction. So, indeed y > z > x, which proves part (ii).
We observe that if z = 1 (and so, (x, y) = (1, 2) assuming x < y, as above), then

the conclusion of our problem holds trivially with a = 1, b = 0, c = d = 1.
So, from now on, for any solution (x, y, z) of xy− z2 = 1 we assume that

x < z < y.
Now, in order to derive the desired conclusion, we argue by contradiction and

therefore assume there exists a triple (x0, y0, z0) ∈ N3 such that

• x0y0 − z20 = 1,
• there exist no nonnegative integers a0, b0, c0, d0 such that x0 = a20 + b20,
y0 = c20 + d20 and z0 = a0c0 + b0d0.
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• z0 is minimal among all such triples.

We claim then that (x0, x0 + y0− 2z0, z0− x0) is another triplet satisfying the first
two conditions above and clearly, contradicting the minimality of z0 above. First
of all, since x0, y0, z0 ∈ N, we have that z0 > x0 (as above in part (i)) and so,
x0, z0 − x0 ∈ N; furthermore, x0 + y0 − 2z0 > 0 because

(x0 + y0)2 ≥ 4x0y0 > 4z20 .

Now, regarding the first condition above:

x0(x0 + y0 − 2z0)− (z0 − x0)2

= x2
0 + x0y0 − 2z0x0 − z20 + 2z0x0 − x2

0

= x0y0 − z20

= 1,

as claimed. As for the second condition above, if there were some nonnegative
integers a1, b1, c1, d1 such that

x0 = a21 + b21

x0 + y0 − 2z0 = c21 + d21

z0 − x0 = a1c1 + b1d1

then

z0 = a1c1 + b1d1 + a21 + b21 = a1(a1 + c1) + b1(b1 + d1)

and

y0 = c21 + d21 + a21 + b21 + 2a1c1 + 2b1d1 = (a1 + c1)2 + (b1 + d1)2,

thus delivering the desired contradiction.

Problem 4. Let P,Q ∈ R[x, y] be polynomials satisfying the following properties:

(A) for each y0 ∈ R≥0, the functions x 7→ P (x, y0) and x 7→ Q(x, y0) are strictly
increasing;

(B) for each x0 ∈ R≥0, the function y 7→ P (x0, y) is strictly increasing, while
the function y 7→ Q(x0, y) is strictly decreasing; and

(C) P (x, 0) = Q(x, 0) for each x ∈ R≥0 and also, P (0, 0) = 0.

Prove the following:

(1) for each real numbers 0 ≤ b ≤ a, there exists a unique pair (x0, y0)
of nonnegative real numbers with the property that P (x0, y0) = a and
Q(x0, y0) = b.

(2) if 0 ≤ a < b, then there exist no nonnegative real numbers x0 and y0 such
that P (x0, y0) = a and Q(x0, y0) = b.

Solution. For each a ≥ 0, we let xa ∈ [0,+∞) be the unique real number with
the property that P (xa, 0) = a. Note that the existence uniqueness of xa follows
from the following facts:

• the function x 7→ P (x, 0) is strictly increasing and since P (x, y) is a polyno-
mial, then the function x 7→ P (x, 0) is a polynomial as well, and therefore,
limx→+∞ P (x, 0) = +∞.

• P (0, 0) = 0 and so, the continuous function x 7→ P (x, 0) must take all
posible nonnegative real values as we let x vary in [0,+∞).
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From now on, we let a be a fixed nonnegative real number. For each x ∈ [0, xa]
we claim that there exists a unique real number, denoted by fa(x) (which is thus a
well-defined function) such that P (x, fa(x)) = a. Indeed, for each given x̃ ∈ [0, xa],
we know that

• the function y 7→ P (x̃, y) is strictly increasing and since P (x, y) is a polyno-
mial, then the function y 7→ P (x̃, y) is a polynomial as well, and therefore,
limy→+∞ P (x̃, y) = +∞.
• P (x̃, 0) ≤ P (xa, 0) = a since the function x 7→ P (x, 0) is a strictly increasing

function.

In particular, using also the choice of xa, we have that fa(xa) = 0.
Claim. The function fa is continuous on [0, xa].
Proof of Claim. This follows by proving the following two properties:

(i) fa satisfies the Intermediate Value Theorem (IVT) on any subinterval of
[0, xa].

(ii) fa is strictly decreasing.

We see that fa(x̃2) < fa(x̃1) whenever 0 ≤ x̃1 < x̃2 ≤ xa, because we have that

P (x̃2, fa(x̃2))

= a

= P (x̃1, fa(x̃1)) (by the definition of fa)

< P (x̃2, fa(x̃1)) (since x 7→ P (x, fa(x̃1)) is strictly increasing)

and finally (once again) y 7→ P (x̃2, y) is strictly increasing.
Now, in order to see that fa satisfies the IVT on each subinterval of [0, xa], we

observe that if

fa(x̃1) = b1 > b2 = fa(x̃2)

for some 0 ≤ x̃1 < x̃2 ≤ xa and moreover, c ∈ (b2, b1), then we have that

P (x̃2, c)

> P (x̃2, b2) (since y 7→ P (x̃2, y) is strictly increasing)

= P (x̃2, fa(x̃2))

= a

= P (x̃1, fa(x̃1))

= P (x̃1, b1)

> P (x̃1, c) (since y 7→ P (x̃1, y) is strictly increasing.)

Then, using the fact that x 7→ P (x, c) is a continuous function and

P (x̃1, c) < a < P (x̃2, c) ,

we conclude (once again by the IVT) the existence of some x̃ ∈ (x̃1, x̃2) such that
fa(x̃) = c.

Finally, in order to conclude the proof of our claim, we are using the fact that
a strictly monotone function g on any interval [c, d] which satisfies the IVT must
actually be continuous. The point is that for any t ∈ (c, d) (an almost identical
argument applies also to the two endpoints of the interval), we have well-defined
lateral limits:

L−t := lim
x→t−

g(x) and L+
t := lim

x→t+
g(x)
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because g(x) is a strictly monotone function. Now, since g satisfies the IVT (on
any subinterval of [c, d]), then we see that

L−t = g(t) = L+
t

since otherwise the IVT would fail on a small interval centered around t.
In conclusion, our function fa is indeed a continuous function, which concludes

the proof of the given Claim.
Now, going back to our original setting, we let the function h : [0, xa] −→ R

given by h(x) := Q(x, fa(x)). Because Q is a polynomial, while fa is continuous,
we conclude that also the function h is continuous. We have

h(xa)

= Q(xa, fa(xa))

= Q(xa, 0) (since fa(xa) = 0 by our choice of xa and of fa)

= P (xa, 0) (by our hypothesis)

= a

≥ 0

= Q(0, 0)

≥ Q(0, fa(0)) (since fa(0) ≥ 0 and y 7→ Q(0, y) is decreasing)

= ha(0) (by definition of the function ha).

So, using again the IVT, for any 0 ≤ b ≤ a, there exists some x̃ ∈ [0, xa] such that
h(x̃) = b, i.e., letting ỹ := fa(x̃) we have that

Q (x̃, ỹ) = b and P (x̃, ỹ) = a.

Now, we claim that x̃ is unique with the property that h(x̃) = b. Indeed, this claim
follows from the fact that Q is strictly increasing in the first variable and strictly
decreasing in the second variable, while fa is strictly decreasing, and therefore, for
any 0 ≤ x̃1 < x̃2 ≤ xa, we have that

h(x̃1) = Q (x̃1, fa(x̃1)) < Q (x̃2, fa(x̃1)) < Q (x̃2, fa(x̃2)) = h(x̃2).

Finally, we cannot have any simultaneous solution (x0, y0) in nonnegative real num-
bers for the equations

P (x0, y0) = a and Q(x0, y0) = b

if a < b since then we would have

a = P (x0, y0) > P (x0, 0) = Q(x0, 0) > Q(x0, y0) = b,

contradiction.


