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PROF. DRAGOS GHIOCA

Problem 1. Find all real numbers a, b, c with the property that the equation
2 +ar® +br+c=0
has 3 real roots 71, ra, 3 (not necessarily distinct) with the property that the equa-
tion
B Had? + e+ =0

has the roots 73,73, r3.

Solution. So, we're asked to find a, b and c¢ such that there exist distinct real
numbers 71, 79 and r3 such that

—a® = (ri+ra+r3)® =rd 405 +13

3 3,.3

b = (rirg + rirs + rors)® = w33 4 r3rd 4 rded
—C =T1T2T3.
The first equation yields
0
= 3(7‘sz + T‘%Tg + 7’%?"1 + 7"%7’3 + r2r§ + Tlrg) + 61171273

= 3(7"17“2 + r2Ts3 + 7’37"1)(7’1 + T2 + 7’3) — 37"17“27"3

= —3ab + 3c¢;
so, ¢ = ab. Now, the second condition yields similarly
Z xi(l)zi(g)xg(g) + 27"%7“%7"% =0
o is a permutation
of {1,2,3}
and so,
0

2 2 2 2 9 2
= (rirors + riryrs + rirars)(rire + rars + r3rL) — TiT5TS

= rirars(r + 12 +13) b — ¢

— (—o)(—a)b — ¢
= c¢(ab— ¢).
Thus, the condition ¢ = ab is sufficient to guarantee that the solutions of 2% +

ax? + b3z + 3 = 0 are precisely r3, r3 and r3, where rq, ro and r3 are the solutions
of 23 4+ ax? +bx +c = 0.

Problem 2. Let f : Ry — R, be a non-constant function with the property
that for each z,y > 0 we have that f(zy) = f(x)f(y). Find two functions g, h :
R, — R, satisfying the properties:
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o h
o h(x

= h(x)h(y) — g(x)g(y) for each x,y > 0; and
+ g(x) = f(x) for each z > 0.

/N
< |8
~—

~—

Solution. We note that f(x-1) = f(z)- f(1) and so we must have that f(1) = 1.
Also, we obtain that f(1/z) = 1/f(x). Now, using y = « in the first relation above,
we get

h(1) = h(z)? — g*(x)
which we then combine with h(z) + g(z) = f(z) in the special case x = 1 and
therefore,

h(1) = h(1)*=g(1)? = (h(1)~g(1))-(h(1)+9(1)) = (R(1)~g(1))- f(1) = h(1)—g(1),
which yields that g(1) = 0 and in turn, h(1) = 1. Thus,

1=h(1) = h(z)* - g(x)* = (M(x) = g(2)) - (h(z) + g(2)) = (h(x) = g(2)) - f(2)
and so, h(z) — g(z) = 1/f(x), while h(z) + g(z) = f(x). In conclusion,
CJ@Rer @R
"= Tap = ey
Using the fact that f(z/y) = f(x)/f(y), we verify that indeed,

T

h <y) = h(z)h(y) — g(x)g(y) for all x and y.

Problem 8. Let z,y,z € N such that 2y — 2> = 1. Prove that there exist
nonnegative integers a, b, ¢, d such that z = a? + b%, y = ¢ + d? and z = ac + bd.

Solution. First of all, we note the following: if z,y,z € N satisfy zy — 22 = 1,
then

(i) = # y and so, without loss of generality, we may assume = < y.
(ii) With the above convention regarding x < y, we then have either that
(z,y,2) = (1,2,1) or that z < z < y.

Indeed, if x = y we would have 22 — 22 = 1 which has no solution in positive
integers. Therefore, we must have z # y and so, without loss of generality, we may
assume z < y, which proves part (i) above.

Now, for the part (ii) above, we assume that (x,y, z) # (1,2,1), which is equiv-
alent with asking that z > 1. Now, since y? > xy > 22, then we must have that
y > z. If in addition, = > 2, then y > = > 2z and so,

2

zy— 22 >yr— 22 =2y —2)>z2>1,

contradiction. So, indeed y > z > x, which proves part (ii).
We observe that if z =1 (and so, (z,y) = (1,2) assuming x < y, as above), then
the conclusion of our problem holds trivially with a =1,0=0,c=d = 1.
So, from now on, for any solution (z,y, 2) of zy — 22> = 1 we assume that
r<z<y.
Now, in order to derive the desired conclusion, we argue by contradiction and
therefore assume there exists a triple (zo, yo, 20) € N® such that
e 2oy — 25 =1,
e there exist no nonnegative integers ag, bo, co,do such that xg = a2 + b3,
Yo = cg + d% and zy = agcg + bpdp.
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e 2 is minimal among all such triples.

We claim then that (xg, zo + yo — 220, 20 — To) is another triplet satisfying the first
two conditions above and clearly, contradicting the minimality of zy above. First
of all, since xg,yo,20 € N, we have that zy > xg (as above in part (i)) and so,
xg, 20 — o € N; furthermore, xg + yo — 2z9 > 0 because

(zo + y0)* > dmoyo > 423,
Now, regarding the first condition above:

zo(zo + Yo — 220) — (20 — w0)?
= x% + zoyo — 2200 — zg + 22909 — :vg

= ToYo — Zg
= 1,
as claimed. As for the second condition above, if there were some nonnegative
integers a1, by, c1, dy such that
T = aj + b}
To +yo — 220 = i + d}
20 — To = a1€1 + b1dy
then
20 = aycy +bidy +ai + b3 = ay(ay +c1) + by (by +dy)
and
_ 2 2 2, 32 _ 2 2
Yo = ¢i +di + ai + b7 + 2a1c1 + 2b1dy = (a1 + c1)” + (b1 +di)”,

thus delivering the desired contradiction.

Problem 4. Let P,Q € Rz, y| be polynomials satisfying the following properties:

(A) for each yo € R>g, the functions z — P(x,yo) and x — Q(x, yo) are strictly
increasing;
(B) for each zp € R>g, the function y — P(xz¢,y) is strictly increasing, while
the function y — Q(zg,y) is strictly decreasing; and
(C) P(z,0) = Q(z,0) for each z € R> and also, P(0,0) = 0.
Prove the following:

(1) for each real numbers 0 < b < a, there exists a unique pair (zo,yo)
of nonnegative real numbers with the property that P(xo,y9) = a and
Q(z0,y0) = b.

(2) if 0 < a < b, then there exist no nonnegative real numbers xy and yo such
that P(xo,y0) = a and Q(zo,y0) = b.

Solution. For each a > 0, we let 2, € [0,400) be the unique real number with
the property that P(z,,0) = a. Note that the existence uniqueness of x, follows
from the following facts:

e the function z — P(z,0) is strictly increasing and since P(x,y) is a polyno-
mial, then the function  — P(z,0) is a polynomial as well, and therefore,
lim, 400 P(,0) = +o00.

e P(0,0) = 0 and so, the continuous function z +— P(z,0) must take all
posible nonnegative real values as we let  vary in [0, +00).
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From now on, we let a be a fixed nonnegative real number. For each z € [0, z,]
we claim that there exists a unique real number, denoted by f,(z) (which is thus a
well-defined function) such that P(z, f,(z)) = a. Indeed, for each given & € [0, x,],
we know that
e the function y — P(Z,y) is strictly increasing and since P(z,y) is a polyno-
mial, then the function y — P(Z,y) is a polynomial as well, and therefore,
limy_, o0 P(Z,y) = +o00.
e P(%,0) < P(x4,0) = asince the function  — P(z,0) is a strictly increasing
function.
In particular, using also the choice of z,, we have that f,(xz,) = 0.
Claim. The function f, is continuous on [0, z,].
Proof of Claim. This follows by proving the following two properties:

(i) fo satisfies the Intermediate Value Theorem (IVT) on any subinterval of
[0, 24]-
(ii) f, is strictly decreasing.

We see that f,(Z2) < fo(Z1) whenever 0 < &1 < &2 < z,, because we have that

P (T2, fu(Z2)

=a

= P (Z1, fa(Z1)) (by the definition of f,)

< P (Za, fo(Z1)) (since z — P (x, fo(Z1)) is strictly increasing)

and finally (once again) y — P (Z2,y) is strictly increasing.

Now, in order to see that f, satisfies the IVT on each subinterval of [0, z,], we
observe that if

Ja(Z1) = b1 > by = fa(Z2)

for some 0 < & < &2 < z, and moreover, ¢ € (ba, by), then we have that
P (ds,c

> P (@2,bs) (since y — P (Z2,y) is strictly increasing

= P (%2, fa(%2)

= P (%1, fa(Z1)

=P (Z1,01

> P (Z1,c) (since y — P(Z1,y) is strictly increasing.

—_ —

IS

— ~— —

Then, using the fact that z — P(z,¢) is a continuous function and
P (21,¢) < a< P(22,c),

we conclude (once again by the IVT) the existence of some & € (%1, Z2) such that
fa(Z) =c.

Finally, in order to conclude the proof of our claim, we are using the fact that
a strictly monotone function g on any interval [e,d] which satisfies the IVT must
actually be continuous. The point is that for any ¢ € (¢,d) (an almost identical
argument applies also to the two endpoints of the interval), we have well-defined
lateral limits:

L; = lim g(z) and L := lim g(x)

Tt~ z—tt
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because g(z) is a strictly monotone function. Now, since g satisfies the IVT (on
any subinterval of [c, d]), then we see that

P =9(t) =L
since otherwise the IVT would fail on a small interval centered around t.

In conclusion, our function f, is indeed a continuous function, which concludes
the proof of the given Claim.

Now, going back to our original setting, we let the function h : [0,z,] — R
given by h(z) := Q(x, fo(x)). Because @ is a polynomial, while f, is continuous,
we conclude that also the function h is continuous. We have

h(zq

= Q(zav fa(ma)

= Q(x4,0) (since fq(xq) =0 by our choice of z, and of f,
= P(z,,0) (by our hypothesis

T — — —

Y%
o 2

=Q(0,0
> Q(0, f,(0)) (since f,(0) > 0 and y — Q(0,y) is decreasing
= hq(0) (by definition of the function h,).

— =

So, using again the IVT, for any 0 < b < a, there exists some Z € [0, z,] such that
h(Z) = b, i.e., letting § := f,(Z) we have that

Q(Z,9) =band P(z,7) = a.
Now, we claim that & is unique with the property that h(Z) = b. Indeed, this claim
follows from the fact that @ is strictly increasing in the first variable and strictly

decreasing in the second variable, while f, is strictly decreasing, and therefore, for
any 0 < 1 < Z9 < x4, we have that

h(z1) = Q (Z1, fo(T1)) < Q (T2, fa(T1)) < Q (T2, fa(T2)) = h(F2).

Finally, we cannot have any simultaneous solution (xg, yo) in nonnegative real num-
bers for the equations

P(z0,90) = a and Q(z0,y0) = b

if a < b since then we would have
a = P(z0,Y0) > P(20,0) = Q(z0,0) > Q(x0,%0) = b,

contradiction.



