PUTNAM PRACTICE SET 9

PROF. DRAGOS GHIOCA

Problem 1. Find all real numbers a, b, c with the property that the equation

$$x^3 + ax^2 + bx + c = 0$$

has 3 real roots r_1, r_2, r_3 (not necessarily distinct) with the property that the equation

$$x^3 + a^3x^2 + b^3x + c^3 = 0$$

has the roots r_1^3, r_2^3, r_3^3 .

Solution. So, we're asked to find a, b and c such that there exist distinct real numbers r_1, r_2 and r_3 such that

$$-a^{3} = (r_{1} + r_{2} + r_{3})^{3} = r_{1}^{3} + r_{2}^{3} + r_{3}^{3}$$

$$b^{3} = (r_{1}r_{2} + r_{1}r_{3} + r_{2}r_{3})^{3} = r_{1}^{3}r_{2}^{3} + r_{1}^{3}r_{3}^{3} + r_{2}^{3}r_{3}^{3}$$

$$-c = r_{1}r_{2}r_{3}.$$

The first equation yields

$$= 3(r_1^2r_2 + r_1^2r_3 + r_2^2r_1 + r_2^2r_3 + r_2r_3^2 + r_1r_3^2) + 6r_1r_2r_3$$

= 3(r_1r_2 + r_2r_3 + r_3r_1)(r_1 + r_2 + r_3) - 3r_1r_2r_3
= -3ab + 3c;

0

so, c = ab. Now, the second condition yields similarly

$$\sum_{\substack{\sigma \text{ is a permutation} \\ \text{ of } \{1,2,3\}}} x_{\sigma(1)}^3 x_{\sigma(2)}^2 x_{\sigma(3)} + 2r_1^2 r_2^2 r_3^2 = 0$$

and so,

$$0$$

$$= (r_1^2 r_2 r_3 + r_1 r_2^2 r_3 + r_1 r_2 r_3^2)(r_1 r_2 + r_2 r_3 + r_3 r_1) - r_1^2 r_2^2 r_3^2$$

$$= r_1 r_2 r_3 (r_1 + r_2 + r_3) \cdot b - c^2$$

$$= (-c)(-a)b - c^2$$

$$= c(ab - c).$$

Thus, the condition c = ab is sufficient to guarantee that the solutions of $x^3 + a^3x^2 + b^3x + c^3 = 0$ are precisely r_1^3 , r_2^3 and r_3^3 , where r_1 , r_2 and r_3 are the solutions of $x^3 + ax^2 + bx + c = 0$.

Problem 2. Let $f : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ be a non-constant function with the property that for each x, y > 0 we have that f(xy) = f(x)f(y). Find two functions $g, h : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ satisfying the properties:

•
$$h\left(\frac{x}{y}\right) = h(x)h(y) - g(x)g(y)$$
 for each $x, y > 0$; and

• h(x) + g(x) = f(x) for each x > 0.

Solution. We note that $f(x \cdot 1) = f(x) \cdot f(1)$ and so we must have that f(1) = 1. Also, we obtain that f(1/x) = 1/f(x). Now, using y = x in the first relation above, we get

$$h(1) = h(x)^2 - g^2(x)$$

which we then combine with h(x) + g(x) = f(x) in the special case x = 1 and therefore,

$$h(1) = h(1)^2 - g(1)^2 = (h(1) - g(1)) \cdot (h(1) + g(1)) = (h(1) - g(1)) \cdot f(1) = h(1) - g(1),$$

which yields that g(1) = 0 and in turn, h(1) = 1. Thus,

$$1 = h(1) = h(x)^2 - g(x)^2 = (h(x) - g(x)) \cdot (h(x) + g(x)) = (h(x) - g(x)) \cdot f(x)$$

and so, h(x) - g(x) = 1/f(x), while h(x) + g(x) = f(x). In conclusion,

$$h(x) = \frac{f(x)^2 + 1}{2f(x)}$$
 and $g(x) = \frac{f(x)^2 - 1}{2f(x)}$

Using the fact that f(x/y) = f(x)/f(y), we verify that indeed,

$$h\left(\frac{x}{y}\right) = h(x)h(y) - g(x)g(y)$$
 for all x and y.

Problem 3. Let $x, y, z \in \mathbb{N}$ such that $xy - z^2 = 1$. Prove that there exist nonnegative integers a, b, c, d such that $x = a^2 + b^2$, $y = c^2 + d^2$ and z = ac + bd.

Solution. First of all, we note the following: if $x, y, z \in \mathbb{N}$ satisfy $xy - z^2 = 1$, then

- (i) $x \neq y$ and so, without loss of generality, we may assume x < y.
- (ii) With the above convention regarding x < y, we then have either that (x, y, z) = (1, 2, 1) or that x < z < y.

Indeed, if x = y we would have $x^2 - z^2 = 1$ which has no solution in **positive** integers. Therefore, we must have $x \neq y$ and so, without loss of generality, we may assume x < y, which proves part (i) above.

Now, for the part (ii) above, we assume that $(x, y, z) \neq (1, 2, 1)$, which is equivalent with asking that z > 1. Now, since $y^2 > xy > z^2$, then we must have that y > z. If in addition, $x \ge z$, then $y > x \ge z$ and so,

$$xy - z^2 \ge yz - z^2 = z(y - z) \ge z > 1,$$

contradiction. So, indeed y > z > x, which proves part (ii).

We observe that if z = 1 (and so, (x, y) = (1, 2) assuming x < y, as above), then the conclusion of our problem holds trivially with a = 1, b = 0, c = d = 1.

So, from now on, for any solution (x, y, z) of $xy - z^2 = 1$ we assume that x < z < y.

Now, in order to derive the desired conclusion, we argue by contradiction and therefore assume there exists a triple $(x_0, y_0, z_0) \in \mathbb{N}^3$ such that

- $x_0y_0 z_0^2 = 1$,
- there exist no nonnegative integers a_0, b_0, c_0, d_0 such that $x_0 = a_0^2 + b_0^2$, $y_0 = c_0^2 + d_0^2$ and $z_0 = a_0c_0 + b_0d_0$.

• z_0 is minimal among all such triples.

We claim then that $(x_0, x_0 + y_0 - 2z_0, z_0 - x_0)$ is another triplet satisfying the first two conditions above and clearly, contradicting the minimality of z_0 above. First of all, since $x_0, y_0, z_0 \in \mathbb{N}$, we have that $z_0 > x_0$ (as above in part (i)) and so, $x_0, z_0 - x_0 \in \mathbb{N}$; furthermore, $x_0 + y_0 - 2z_0 > 0$ because

$$(x_0 + y_0)^2 \ge 4x_0y_0 > 4z_0^2.$$

Now, regarding the first condition above:

$$\begin{aligned} x_0(x_0 + y_0 - 2z_0) - (z_0 - x_0)^2 \\ &= x_0^2 + x_0 y_0 - 2z_0 x_0 - z_0^2 + 2z_0 x_0 - x_0^2 \\ &= x_0 y_0 - z_0^2 \\ &= 1, \end{aligned}$$

as claimed. As for the second condition above, if there were some nonnegative integers a_1,b_1,c_1,d_1 such that

$$x_0 = a_1^2 + b_1^2$$

$$x_0 + y_0 - 2z_0 = c_1^2 + d_1^2$$

$$z_0 - x_0 = a_1c_1 + b_1d_1$$

then

$$z_0 = a_1c_1 + b_1d_1 + a_1^2 + b_1^2 = a_1(a_1 + c_1) + b_1(b_1 + d_1)$$

and

$$y_0 = c_1^2 + d_1^2 + a_1^2 + b_1^2 + 2a_1c_1 + 2b_1d_1 = (a_1 + c_1)^2 + (b_1 + d_1)^2,$$

thus delivering the desired contradiction.

Problem 4. Let $P, Q \in \mathbb{R}[x, y]$ be polynomials satisfying the following properties:

- (A) for each $y_0 \in \mathbb{R}_{\geq 0}$, the functions $x \mapsto P(x, y_0)$ and $x \mapsto Q(x, y_0)$ are strictly increasing;
- (B) for each $x_0 \in \mathbb{R}_{\geq 0}$, the function $y \mapsto P(x_0, y)$ is strictly increasing, while the function $y \mapsto Q(x_0, y)$ is strictly decreasing; and
- (C) P(x,0) = Q(x,0) for each $x \in \mathbb{R}_{\geq 0}$ and also, P(0,0) = 0.

Prove the following:

- (1) for each real numbers $0 \le b \le a$, there exists a unique pair (x_0, y_0) of nonnegative real numbers with the property that $P(x_0, y_0) = a$ and $Q(x_0, y_0) = b$.
- (2) if $0 \le a < b$, then there exist no nonnegative real numbers x_0 and y_0 such that $P(x_0, y_0) = a$ and $Q(x_0, y_0) = b$.

Solution. For each $a \ge 0$, we let $x_a \in [0, +\infty)$ be the unique real number with the property that $P(x_a, 0) = a$. Note that the existence uniqueness of x_a follows from the following facts:

- the function $x \mapsto P(x,0)$ is strictly increasing and since P(x,y) is a polynomial, then the function $x \mapsto P(x,0)$ is a polynomial as well, and therefore, $\lim_{x\to+\infty} P(x,0) = +\infty$.
- P(0,0) = 0 and so, the continuous function $x \mapsto P(x,0)$ must take all possible nonnegative real values as we let x vary in $[0, +\infty)$.

PROF. DRAGOS GHIOCA

From now on, we let a be a fixed nonnegative real number. For each $x \in [0, x_a]$ we claim that there exists a unique real number, denoted by $f_a(x)$ (which is thus a well-defined function) such that $P(x, f_a(x)) = a$. Indeed, for each given $\tilde{x} \in [0, x_a]$, we know that

- the function y → P(x, y) is strictly increasing and since P(x, y) is a polynomial, then the function y → P(x, y) is a polynomial as well, and therefore, lim_{y→+∞} P(x, y) = +∞.
- $P(\tilde{x}, 0) \leq P(x_a, 0) = a$ since the function $x \mapsto P(x, 0)$ is a strictly increasing function.

In particular, using also the choice of x_a , we have that $f_a(x_a) = 0$.

Claim. The function f_a is continuous on $[0, x_a]$.

Proof of Claim. This follows by proving the following two properties:

(i) f_a satisfies the Intermediate Value Theorem (IVT) on any subinterval of $[0, x_a]$.

(ii) f_a is strictly decreasing.

We see that $f_a(\tilde{x}_2) < f_a(\tilde{x}_1)$ whenever $0 \leq \tilde{x}_1 < \tilde{x}_2 \leq x_a$, because we have that

$$P\left(\tilde{x}_{2}, f_{a}(\tilde{x}_{2})\right)$$

$$= a$$

$$= P\left(\tilde{x}_{1}, f_{a}(\tilde{x}_{1})\right) \text{ (by the definition of } f_{a})$$

$$P\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{1}, \tilde{x}_{2}, \tilde{x$$

 $< P(\tilde{x}_2, f_a(\tilde{x}_1))$ (since $x \mapsto P(x, f_a(\tilde{x}_1))$ is strictly increasing)

and finally (once again) $y \mapsto P(\tilde{x}_2, y)$ is strictly increasing.

Now, in order to see that f_a satisfies the IVT on each subinterval of $[0, x_a]$, we observe that if

$$f_a(\tilde{x}_1) = b_1 > b_2 = f_a(\tilde{x}_2)$$

for some $0 \leq \tilde{x}_1 < \tilde{x}_2 \leq x_a$ and moreover, $c \in (b_2, b_1)$, then we have that

$$P(\tilde{x}_{2}, c)$$

$$> P(\tilde{x}_{2}, b_{2}) \text{ (since } y \mapsto P(\tilde{x}_{2}, y) \text{ is strictly increasing)}$$

$$= P(\tilde{x}_{2}, f_{a}(\tilde{x}_{2}))$$

$$= a$$

$$= P(\tilde{x}_{1}, f_{a}(\tilde{x}_{1}))$$

$$= P(\tilde{x}_{1}, b_{1})$$

$$> P(\tilde{x}_{2}, b_{2}) \text{ (since } x \mapsto P(\tilde{x}_{2}, y) \text{ is strictly increasing)}$$

 $> P(\tilde{x}_1, c) \text{ (since } y \mapsto P(\tilde{x}_1, y) \text{ is strictly increasing.)}$

Then, using the fact that $x \mapsto P(x, c)$ is a continuous function and

$$P\left(\tilde{x_1}, c\right) < a < P\left(\tilde{x_2}, c\right),$$

we conclude (once again by the IVT) the existence of some $\tilde{x} \in (\tilde{x}_1, \tilde{x}_2)$ such that $f_a(\tilde{x}) = c$.

Finally, in order to conclude the proof of our claim, we are using the fact that a strictly monotone function g on any interval [c, d] which satisfies the IVT must actually be continuous. The point is that for any $t \in (c, d)$ (an almost identical argument applies also to the two endpoints of the interval), we have well-defined lateral limits:

$$L_t^- := \lim_{x \to t^-} g(x) \text{ and } L_t^+ := \lim_{x \to t^+} g(x)$$

because g(x) is a strictly monotone function. Now, since g satisfies the IVT (on any subinterval of [c, d]), then we see that

$$L_t^- = g(t) = L_t^+$$

since otherwise the IVT would fail on a small interval centered around t.

In conclusion, our function f_a is indeed a continuous function, which concludes the proof of the given **Claim**.

Now, going back to our original setting, we let the function $h : [0, x_a] \longrightarrow \mathbb{R}$ given by $h(x) := Q(x, f_a(x))$. Because Q is a polynomial, while f_a is continuous, we conclude that also the function h is continuous. We have

$$\begin{split} h(x_a) &= Q(x_a, f_a(x_a)) \\ &= Q(x_a, 0) \text{ (since } f_a(x_a) = 0 \text{ by our choice of } x_a \text{ and of } f_a) \\ &= P(x_a, 0) \text{ (by our hypothesis)} \\ &= a \\ &\geq 0 \\ &= Q(0, 0) \\ &\geq Q(0, f_a(0)) \text{ (since } f_a(0) \geq 0 \text{ and } y \mapsto Q(0, y) \text{ is decreasing)} \end{split}$$

 $= h_a(0)$ (by definition of the function h_a).

So, using again the IVT, for any $0 \le b \le a$, there exists some $\tilde{x} \in [0, x_a]$ such that $h(\tilde{x}) = b$, i.e., letting $\tilde{y} := f_a(\tilde{x})$ we have that

$$Q(\tilde{x}, \tilde{y}) = b$$
 and $P(\tilde{x}, \tilde{y}) = a$.

Now, we claim that \tilde{x} is unique with the property that $h(\tilde{x}) = b$. Indeed, this claim follows from the fact that Q is strictly increasing in the first variable and strictly decreasing in the second variable, while f_a is strictly decreasing, and therefore, for any $0 \leq \tilde{x}_1 < \tilde{x}_2 \leq x_a$, we have that

$$h(\tilde{x}_1) = Q(\tilde{x}_1, f_a(\tilde{x}_1)) < Q(\tilde{x}_2, f_a(\tilde{x}_1)) < Q(\tilde{x}_2, f_a(\tilde{x}_2)) = h(\tilde{x}_2).$$

Finally, we cannot have any simultaneous solution (x_0, y_0) in nonnegative real numbers for the equations

$$P(x_0, y_0) = a$$
 and $Q(x_0, y_0) = b$

if a < b since then we would have

$$a = P(x_0, y_0) > P(x_0, 0) = Q(x_0, 0) > Q(x_0, y_0) = b$$

contradiction.